
Journal o f  Statistical Physics, 11ol. 19, No. 2, I978 

The Statistics of Curie-Weiss Models 

Richard S. Ellis 1'2 and Charles M. Newman 3 

Received November 29, 1977; revised February 22, 1978 

Let S, denote the random total magnetization of an n-site Curie-Weiss 
model, a collection of n (spin) random variables with an equal interaction 
of strength 1/n between each pair of spins. The asymptotic behavior for 
large n of the probability distribution of S, is analyzed and related to the 
well-known (mean-field) thermodynamic properties of these models. One 
particular result is that at a type-k critical point (Sn - nm)/n 1- ~12~ has a 
limiting distribution with density proportional to exp[-hs2~/(2k)!], where 
m is the mean magnetization per site and ,~ is a positive critical parameter 
with a universal upper bound. Another result describes the asymptotic 
behavior relevant to metastability. 

KEY WORDS: Block spin; renormalization group; mean-field; Curie- 
Weiss. 

1. INTRODUCTION 

The classical Curie-Weiss theory o f  magnetism occupies a central place in the 
physical literature. Based on the device o f  a self-consistent (or mean) field, 
the theory allows one to readily study the behavior  o f  thermodynamic  
quantities such as specific heat, isothermal susceptibility, and magnetizat ion 
in the ne ighborhood of  the critical point. Unfortunately,  the predictions o f  
this classical theory do not  completely agree with experiment, and so other 
theories, like nearest neighbor Ising models, must  be considered. However,  
because o f  its relative simplicity and the qualitative correctness o f  at least 
some of  its predictions (e.g., it works well away f rom the critical point), the 
Curie-Weiss theory has been historically important51,16~ 
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A relatively recent approach to critical behavior is the renormalization 
group method. (~2.19~ An underlying idea of this method is that a critical point 
for (say) a lattice model of magnetism can be analyzed probabilistically by 
analyzing the asymptotics of block spins; i.e., sums of the spin random 
variables in the model. (9.1~ In particular, the validity or nonvalidity of the 
central limit theorem should be related to the noncriticality or criticality of 
phase, while the parameters appearing in limiting distributions of suitably 
scaled block spins should be directly related to critical exponents in the model. 

The purpose of this paper is to present, without proofs, block-spin limit 
theorems and related results for one such model, the Curie-Weiss model. As 
shown by Kac, Cl1~ the thermodynamics of this model coincides with that of 
the classical Curie-Weiss theory of magnetism. Just as the classical Curie- 
Weiss theory has been helpful in one approach to the study of critical be- 
havior, it is hoped that our probabilistic results on Curie-Weiss models will 
be helpful in analyzing analogous phenomena in more realistic systems. The 
Curie-Weiss model is often considered to exhibit uninteresting statistical 
behavior, since the fluctuations of block spins are usually thought to be 
normally distributed. One surprise of the present research is that this is not 
at all the case, provided that the model is properly viewed. Then the rich 
probabilistic structure of the Curie-Weiss model emerges. 

Some of the results presented here appeared first in Ref. 5, which can be 
consulted for detailed proofs. For the proofs of more recent results and for 
extensions to other models, a full-length study is planned. A discussion of 
relevant background material more complete than could be given here is 
included in Ref. 6. 

2. DEFINITIONS AND PRELIMINARY RESULTS 

Let p be a nondegenerate Borel probability measure on W satisfying 

f exp(x2/2) do(x) < oo (1) 

The Curie-Weiss model is defined as the triangular array of spin random 
variables {XJ~(p):j = 1 .... , n} (n = 1, 2,..) with joint distribution 

= dp(x,) (2) dP,~(p; xl,.o., x,~) ~ exp 2n j j = 1 

where 

= d p ( x 3  (3) 
,~ 2n j= 1 

Herej  denotes site location in a finite lattice o fn  sites. In our formulation, all 
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thermodynamic parameters are introduced via the p dependence in (2). For 
example, inverse temperature fl and external field h are brought in by replacing 
dp by 

dpB,h(x ) = exp(~/-ff h) dp(x/'V'-~) (4) 

There are two natural choices of block spin variable, distinguished by 
whether the thermodynamic limit is taken together with or prior to the long- 
range order limit (we use terminology adapted from Refs. 8 and 14): 

the long-order block spin 

s.'(p) = ~ x~"~(p) (5) 
t = 1  

and the short-order block spin 

S,,S(p) = ~ X~~ (6) 
J = l  

Here, {X~| = 1, 2,..} are random variables with joint distribution 
dP~(p; xl, x2 .... ) on R *, the finite-dimensional distributions of which are 
defined to be the weak limits, as n ~ 0% of the corresponding finite-dimen- 
sional distributions ofdP, in (2). The formula for dPo~ will be given in Section 
5. From this formula, it will be clear that the statistics of S,,S(p) are trivial (i.e., 
asymptotically normally distributed fluctuations regardless of p). By contrast, 
the possible kinds of fluctuations of S,,~(p) will be seen in Section 3 to be quite 
varied and to depend on p in an interesting way. From now on, the p in the 
notation for Z,(p), X~")(p), Xj~176 S,~t(p), S,,S(p) will be dropped, provided 
there is no danger of confusion. 

The specific free energy f(p) is defined by the limit 

f(p) = - lim 1 In Z ,  (7) 
n ~ o 0  n 

The following variational formula forf(p) is easily derived (Ref. 11 ; Ref. 18, 
p. 100). Here and below all integrals extend over g~l unless otherwise noted. 

Proposition. Define 

�89 2 - In (exp(zx)  dp(x), z real (8) G(z) Gp(z) 
d 

Then 

f(p) = inf G,,(z) (9) 
z r e&l  

G(z) is real analytic and G(z) -+ oo as ]z[ --~ 0% so that G has only a finite 
number of global minima. 
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Because of (9), topological properties of G correspond to thermodynamic 
properties of the Curie-Weiss model. Thus, multiple global minima of G 
correspond to coexisting phases, the magnetizations of which are the various 
locations of the minima; nonquadratic global minima correspond to critical 
phases, local minima to metastable phases, and points of  inflection to 
spinodal points. As we show in the next section, these topological properties 
of G also dictate the asymptotic behavior of S,  z. 

Given a positive integer ~, a distinct real numbers m, ..... m=, and a posi- 
tive integers kl,..., k~, we say that the vector (m,, k, ;... ; m=, k=) is admissible. 
We write 

p ~ (m,, k, ;...; m~, k=) 

if the set of global minima of Gp is {m, ..... m=} and for each i = 1 ..... a, 

Gp(z) = Go(m 0 -4- ;~i(z - m~) 2~ �9 ( 2 k , ) !  + O [ ( z  - m,)2~,],  as  z - + m ,  (10)  

where A~ is a positive real number. We call k(mO =- k, the type and ~(m,) = A, 
the strength of the minimum m,; these definitions also make sense for a local 
minimum. The maximal type is defined as the largest of the k,. The measure p 
is said to be pure if G D has a unique global minimum and semipure if it has a 
unique global minimum of maximal type; such measures are said to be 
critical if the type (or maximal type) exceeds one. A pure (or semipure) 
measure is said to be centered at m, the location of the unique global minimum 
(of maximal type); its type is the type k(m) of m. 

We note that if p is semipure and centered at too, then m = mo is a 
solution of GD'(m) = 0, or equivalently, 

m = f x exp(mx) d p ( x ) / f  exp(mx) dp(x) (11) 

This is just the "self-consistent field equation," which forms the basis of the 
classical Curie-Weiss theory (Ref. 1, p. 9). For  a general p, the solutions of 
(11) give all the local maxima and minima of G~; thus (11) has a unique 
solution m0 only when p is pure, centered at mo, and GD has no other local 
minima. It is an intriguing fact that although GD can only have a finite number 
of global minima, p's exist for which Gp has infinitely many local minima. 

R e f o r m u l a t i o n  of  C o n d i t i o n  of  P u r i t y  

Define the moments 

= ( x j dp(x), j = O, 1, 2 tLJ(P) 
J 

(12) 
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and let #j denote the moments of  a standard normal random variable: 

- l / 2 f  x j exp(-x2/2)  dx, j = 0, 1, 2 .... (1 gJ (2re) 3) 

One can then easily see that p is pure, centered at zero, and of  type k if and 
only if 

f exp(zx) do(x) exp(z2/2), for all z real, • 0 (14) < z 

and 

{0, j =  0 , 1 , 2  ..... 2 k -  1 
~j - /z j (p)  = > 0, j = 2k 

As examples, we have 

p = � 8 9  1 ) +  3 ( x +  1)1 for k = 2  (15) 

p = }8(x) + -}[8(x - x/3) + 8(x + V'3)I for k = 3 (16) 

The latter measure was used in Ref. 2 to analyze the tricritical point of liquid 
helium. 

Given any admissible vector (ml, kl;.. .;  m,,  k~), Theorem 6 in 
the next section guarantees the existence of a measure p satisfying p ~ 
(rn~, k~ ;...; m~, k~). As a corollary of this, one obtains pure measures p with 
p ~ (0, k) for each k = 2, 3, 4 ..... 

3. LIMIT THEOREMS FOR LONG-ORDER BLOCK SPINS; 
EXISTENCE OF CRITICAL MEASURES 

Throughout this section, we write S, for S= *. Our first theorem is a law 
of large numbers-type result for S,.  The second theorem corresponds to the 
classical central limit theorem and the classical stable law limit theorems for 
sums of independent, identically distributed random variables. But we 
emphasize that the limiting measures appearing in these results are not the 
classical stable distributions. Theorem 3 describes the infinitesimal neighbor- 
hood of type-k critical measures p by studying the asymptotics of S,(p~) as 
n--+ 0% where {p,: n--- 1, 2,...} are measures that tend to p as n ~ oo. 
Theorem 4 yields the asymptotics of  multiple block spins; i.e., the limit 
r ~ oo in a Curie-Weiss model with n = qr sites, which we think of as 
consisting of q blocks of r sites each. Theorem 5 is a conditional version of 
Theorem 2, extending the latter to the case where p is an arbitrary measure 
(not necessarily semipure) and m is either an arbitrary minimum of  Gp (not 
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necessarily global or of maximal type) or a point of inflection of Gp. Thus 
Theorem 5 should be viewed as describing the critical points (and spinodal 
points) of metastable phases. Theorems 3 and 4 may be similarly extended to 
the metastable context by conditioning. Finally, Theorem 6 guarantees the 
existence of measures p such that G D has prescribed global minima of various 
types. Most of these results extend naturally to Curie-Weiss rotator  models, 
which are Curie-Weiss models with a spherically symmetric, single-spin 
measure p on R d, d ~ {2, 3,..}. On the other hand, to extend all our theorems 
to the non-spherically symmetric case is an interesting open problem, which 
will be discussed in Section 6. We are also lacking a result which would 
generalize Theorem 6 by guaranteeing the existence of measures g such that 
G~ has prescribed local minima of various types. Special cases of Theorems 2 
and 3 appeared in Refs. 15 and 3. The key ingredient in the proofs of Theo- 
rems 1-5 and 8 is the simple fact that if W is a unit normal random variable 
independent of S,(p), then S,(p)/n + W/V~n has distribution proportional to 
e x p [ -  nGp(x)] dx. 

Before we state the results, we comment on their physical content. The 
existence of non-Gaussian limits with scalings n 1 - l/2e for k e {2, 3, 4,...}, as in 
Theorem 2, is consistent with Kadanoff's picture of  critical behavior as a mass 
scale phenomenon involving strongly correlated individual spins (Ref. 12, 
w Strong correlations over large distances are what differentiate a system 
near the critical point from a system far from the critical point. These strong 
corr~ations, in turn, modify the asymptotic mass scale behavior of the system 
away from the usual Gaussian limit. In this sense, the Curie-Weiss model (2) 
with a critical p may be said to have a critical inverse temperature at florlt = 1. 
We justify this terminology further by singling out a class of  measures for 
which the corresponding block spins have a non-Gaussian limit if and only 
if the inverse temperature/3 equals 1 ; for/3 v~ 1, a Gaussian limit arises. 
Consider the class of  symmetric probability measures p with t~2(p) = 1, 
f exp(Tx 2) dp(x) < co for all 7 > 0 and such that p satisfies the GHS inequal- 
ity (see discussion in Ref. 5). Such a p may be shown to be pure, centered at 0, 
and of type k 1> 2, and so by Theorem 2 the corresponding block spins have a 
non-Gaussian limit. Now consider the measure dpB(x ) = dp(x[a/-~) [see 
discussion before (4)]. For  fl < 1, dpB is pure, centered at 0, but of  type k = 1 
(corresponding to the existence of a single, noncritical phase in the high- 
temperature region), and a Gaussian block-spin limit arises. For/3 > 1, GDr 
has two global minima at rn = + m(/3), m(/3) > 0, each of type k = 1 (corre- 
sponding to the existence of  two noncritical phases in the low-temperature 
region). Now an application of Theorem 5 shows that, conditional upon the 
average spin being near one of these two values, a Gaussian limit arises. See 
Ref. 7 for a discussion of the central limit theorem away from the critical 
temperature for more general models. 
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Given p ~ (ml, k~ ;... ; m~, k~), we define the measure 

d % ( m )  = ~. bj 8(m - m j )  (17) 
j = l  

where bj = bj-/~ bj and 

~j  = ([o~(mj)]-zl2kJ ifotherwisekJ is o f  maximal type (18) 

I f  certain r andom variables or  vectors ( Yn: n = 1, 2,...} converge weakly, as 
n ~ 0% to a r andom variable with distribution dv(x)/fdv(x), we write 
Y, ~ dr(x). Given random variables { Y,, W,:  n = 1, 2,...}, a Borel subset A 
of  R, and a measure dr(x), the notat ion 

r . l (w .  ~ a} -+ &(x) (19) 

means that  as n -+  0% the condit ional  distribution o f  Y,, given that  Wn is in 
A, converges weakly to the distribution dv(x)/f dr(x). 

T h e o r e m  1.  I f  p ~ (ml,  kl ; . . . ;  m=, k~), then 

S,[n --> d% (20) 

Theorem 2. I f  p is semipure, centered at m, and o f  type k, then 

( exp(  - x2/2o 2) dx 
(S,, - nm)/n 1 - ii2k __> \ e x p [ -  ;~(m)x2k /(Zk ) !] dx 

i f k  = 1 
(21) 

i f k  >/ 2 

Here ~2 = [A(m)]-1 _ 1 can be shown to be positive. 

Theorem 3. I f p  is pure, centered at m, and o f  type k, then for any real 
A1,..., A2~-x, measures p,  can be chosen so that  p , - +  p and 

X2 ~ 2~- 1 X~.'] 
S,(p,,) - nm -A(m)  ~.. A s dx (22) 

n 1 - 1/zk -> exp (2k)! J" = 1 

T h e o r e m  4.  Assume that  p is semipure, centered at m, and of  type k, 
and denote byfk(x)  dx the limiting measure in (21). For  fixed q, let n = qr in 
(2) and define 

2 2 S,~ z v-(n) S,~ 2 v(~) S ,  q = l"('~) = ~ x j  , �9 = x L j  , . . . ,  , x x j  

J = l  J = r + l  j = ( q - 1 ) r + l  

(23) 
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Then the random vector S, = (S,.~ ..... S,.q) has the following asymptotics as 
r ---> co [where m = (m ..... m)]: 

I ~ ~ 
(S,~ - rm)/r 1-112~ -+~ if k = 1 (24) 

! 

fk(x~) dvq(x~ ..... x~) if k />  2 

where dvq is (one-dimensional) Lebesgue measure supported on {x~ = 
x2 . . . . .  x~}. 

T h e o r e m  5. (a) Assume that m is either a nonunique global minimum 
or a local minimum of G o. Then there exists e' > 0 such that for all 0 < e < e' 

S--~" { ~  ~ [m - E' m + ~]} --~ 3(x - (25) 

S,~ - n m  ( S ,  \ f e x p ( - x 2 / 2 o  2) dx 
"n ~ ~,n-- ~ [m - E, m + El) ---> I, e x p [ -  hx2k/(Zk)!] dx 

if k = l  

if k>_,2 

(26) 

where k is the type and A the strength of m, and a2 is as in Theorem 2. 
(b) Assume that m is a point of inflection of Go and that 

Go(z) = Go(m) + ;~(z - m)  ~k+l ( 2 k +  1)! + o [ ( z - m )  2k +1] a sz - -+m (27) 

for some k e {1, 2,...} and ~ real. Assume that h > 0 (a similar result holds for 
< 0). Then there exists e' > 0 such that for all 0 < ~ < e' 

s .  
f S ,  s [m, m + E]} ---> 3(x - m) (28) 

n ~ n  

S,~ - n m  ( S,~ } 
n V:--l~k-~) ~,n ~ [m, m + E] 

. ]  

fexp[-Ax2~+l/(Zk + 1)!] dx for x >/0 
--'> dP(x)  ~ (29) 1o for x < 0  

We end this section with a theorem on the existence of measures with 
prescribed global minima of various types. The proof follows from results in 
the theory of  moments. (a3) 

T h e o r e m  6. Given any admissible vector (ml, k~;...; m,,  k~) with 
k - k~ +. . .  + k,  >/2, there exists a unique probability measure 13 supported 
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on k points such that /~~ (ml ,k~ ; . . . ;m , , k~ ) .  I f  p # ~  and also p ~  
(ml, k~ ;...; m~, k~), then p is not supported on fewer than k + 1 points and 

),D(m~) < ;~(m~) for each i = 1 ..... ~ (30) 

In particular, for each m and for each k e {2, 3,...}, there exists a unique 
probability measure supported on k points which is pure, centered at rn, and 
of  type k. The strength of the minimum at m is k! and (30) holds, so that if p 
is any other pure measure, centered at m, and of type k, then 

;~D(m) < k! (31) 

Explicit formulas are known for the probability measures of type k />  2, 
the existence of  which is stated in the second half of the theorem (see Ref. 17, 
w w Ref. 5, Theorem 2.3). When m = 0, the support of this measure 
is the zero set of the kth Hermite polynomial. For k = 2, 3, the measures are 
given by (15)-(16). In the analogous theorem for rotator Curie-Weiss models, 
the minimally supported, spherically symmetric measure which is of type k 
at the origin has support on k/2 spherical shells, the origin counting as a half- 
shell for k odd. In particular, for k = 2, 3, these measures (on R a) are 

8(Ixl  - for k = 2 (32) 

2 2 a(Ixl) + d 2)~,=) d + ~ a(Ixl - (d + for k = 3 (33) 

4. O T H E R  R E S U L T S  

In this section, we first discuss the renormalization group equation for 
the Curie-Weiss model and then point out the connection between the limit 
results of Section 3 and critical exponents in the Curie-Weiss theory of  
magnetism. 

The renormalization group equation is derived by choosing a real 
number 0 s [1, 2] and supposing that S,~[n ~ has an unnormalized probability 
density ~0n which tends to ~o as n -+ oo. It  is easily determined that 

(9,~I 1'2 f z u) z - u )  (34) 

with c = 22-o and ~,n = (const)n ~ If  1 < 0 < 2 (so that 2 > c > 1) and 
we take n --~ m, then (34) goes over formally to the fixed point equation 

~0~(z) = [~0~(z/Vc)] ~ (35) 

The latter has solutions, e x p ( -  Alz? )  for p = 2/log2c e (2, oo). It is note- 
worthy that only p = 2k actually arises in the rigorous Curie-Weiss limit 
theorems of Section 3 and that even then there is an upper bound on )t [ef. 
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(30)]. If  Y, in (34) is replaced by 1, then we obtain the fixed point equation of 
the hierarchical model. (8) 

We now turn to the connection between critical exponents and block- 
spin limit theorems for the Curie-Weiss model. Let Pc be pure, centered at 
zero, and of type k. A critical point at p = pc is analyzed thermodynamically 
by describing the behavior of f(p) as p -+  pc along various paths (in the 
thermodynamic parameter space); critical exponents are defined by the lead- 
ing order behavior. For example, define dpn(x)= exp(hx)dpc(x). Then 
ph -+ pc as h -+ 0 and the critical exponent 8 is defined by 

f(ph) = f(pc) - C I hi ~ + ~j~ + higher order terms as h ~ 0 (36) 

Here, C = C(pc) is a positive constant. The following theorem, which puts a 
strong restriction on the possible values of 3, is representative of a number of 
standard results of this sort. Analogous results, which would restrict the 
possible values of critical exponents for more realistic models, would be most 
worthwhile. 

T h e o r e m  7. Let Pc and 3 be as above. Then 

3 = 2k - 1 (37) 

In addition, one can show that the universal bounds of Theorem 6 
[expressed in (30)-(31)] imply universal bounds on certain critical parameters 
associated with an arbitrary measure pc (as in Theorem 7) in terms of the 
critical parameters associated with the minimally supported measure #. For 
example, (31) yields such a lower bound on the constant C appearing in (36): 

C ( p ~ ) - 2 k k  1 ((2k - 1) !)1'(2k-1) ~ > ~  ~ , . , ~  ((2k - 1)') 1'(2k- l ' k !  " 

where ~ = A~,(0) is as in (31). (38) 
Analogous results for more realistic models would be attractive. 

5. S H O R T - O R D E R  B L O C K  S P I N S  

We first describe the thermodynamic limit of the Curie-Weiss spins 
{X~). Results of this type were apparently first derived in Ref. 4 (by different 
methods). 

T h e o r e m  8, In the sense of weak convergence of finite-dimensional 
joint distributions, 

{X~n):j = 1 .... , n} ~ {X}~~ = 1, 2,...} (39) 

where the joint distribution dP~o(p; x l ,  x2 .... ) of {X} ~~ is given by 

dP~(p; x l ,  x2 .... } =  f {~--~1 [exp(mxj)dp(xj ) / fexp(mx)dp(x)] )dzo(m ) 

(40) 
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The measure % is defined in (17). In particular, if p is semipure and centered 
at mo, then {X~ ~176 is a set of independent random variables with common 
distribution exp(mox) dp(x ) / f  exp(mox) dp(x).  I f  p is not semipure, then dP~o 
is a (finite) convex combination of  such infinite product measures. 

The (uninteresting) asymptotics for short-order block spins S~ s now 
follow by the classical law of large numbers and central limit theorem. The 
result (42) can be extended to the nonsemipure case by conditioning (as in 
Theorem 5), with m one of the competing global minima of G D of maximal 
type (but not  with m one of the other global minima or local minima not 
appearing in %); a Gaussian limit still arises. 

Theorem 9. We have 

S f l /n  ---> d r ,  (41) 

I f  p is semipure and centered at m, then 

( S t  - nrn)/n 112 --~ exp( -x2 /2v  2) dx  (42) 

where ~2 = ~2/(~2 + 1); g2 is defined in Theorem 2. 

Comparing this result with Theorems 1-2, we see that while the law of 
large numbers-type limit is the same for both long-order and short-order 
block spins, fluctuations about the mean (in the semipure case) are strikingly 
different. Even for a noncritical measure (k = 1), the right-hand sides of (21) 
and (42) differ. 

6. STRANGE CRITICAL POINTS FOR VECTOR MODELS 

As mentioned briefly above, most of our results have natural extensions 
to spherically symmetric Curie-Weiss rotator models. No unexpected phe- 
nomena occur in such models. In this section we discuss a specific example 
[see (47)] in order to point out some of the peculiarities which may occur in 
the absence of spherical symmetry. The example is based on a suggestion of 
Loren Pitt. 

We suppose that O is a probability measure on R a satisfying (1) (where x 2 
denotes the square of the Euclidean length of  x ~ R ~) and {X} "~) are d- 
dimensional random vectors with joint distribution given by (2) and (3) [with 
the integration in (3) over (~d), rather than ~"]. We def inef  = f ( p )  and note 
that 

f = inf G,(z )  (43) 

where 

G(z) : Go(z) = �89 2 - In fR" exp(zx)dp(x), 

and z x  denotes the usual inner product in N a. 

z s R ~ (44)  
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I f  x = 0 is the unique global minimum of G(x) and p is spherically sym- 
metric, then G(x)  = a(x2) k + O(x2) k§ for some a > 0 and k~{1,  2, 3,..}. 
In this situation, S~ = S~(p) = X[ n~ + ... + X~ ~ behaves asymptotically as in 
Theorem 2, with S,~/n 1-~12~ __>. exp[_a(x2)~] dx  on R a (for k /> 2). 

To simplify notation in the absence of spherical symmetry, we let d = 2 
and denote the components of S~ and x by S~ = (Un, V,~), x = (u, v). One 
can clearly arrange to have a critical point in which the u and v components 
are critical of different type [e.g., by letting p(x) = pa(u)p2(v) so that Un and 
V~ are independent] with 

a ( x )  = a(u,  v) = a~u2~l + a2v2k2 + O(lu[2~l +x + [v12k2 +~) (45) 

In this situation, one must use a (diagonal) matrix scaling to analyze the 
asymptotics of S~ (say, in the case 1 < kl < k2): 

( U, jnl-1/2~*, V,~/nl-1/2~) -+ e x p ( - a l u 2 ~ l  - a2u2k=) du dv (46) 

The critical point of the next example is considerably stranger than that of 
(45) and the asymptotics of S~ are considerably more peculiar than those of 
(46). 

We define p(x) on ~2 as 

dp(u, v) = ~(u)a(v)  + -~(u - V~)~(v) + ~a(u + V3)~(v) 

+ ~8(u)a(v - ~/3) + ~8(u)a(v + V3) (47) 

Note that the marginal distribution of u (or v) from (47) is just the tricritical 
measure, (16). Straightforward calculations show that G(x) = Go(x ) has a 
unique global minimum at the origin and that 

G(u, v) = uZv2/4 + (u 6 + v6)/120 - (u4v = + uZv~)/16 + O(u = + v2) 4 

(48) 

The minimum is thus of  type 3 (i.e., degree 6) along the u, v axes and of type 2 
along all other rays. It is easily shown that S,Jn ~- ~/2~ _+ 8(u)8(v) for k = 3 
and thus it is natural to try to obtain a nondegenerate limit with k = 2; this 
almost works. Formally, S,Jn a/* -+ e x p ( - u 2 v 2 / 4 )  du dv; unfortunately, 
exp(-u2v2/4) is nonintegrable (its integral over R 2 is logarithmically diver- 
gent). To obtain a rigorous limit, we proceed, analogously to Theorem 3, by 
choosing an n-dependent temperature [according to the prescription (4)] 
which approaches the critical temperature from above as n -+ oo. 

T h e o r e m 1 0 .  Let /3~ = 1 -  b/n ~/2 with b > 0 and let d p n ( x ) =  
d p ( x / ~ / ~ )  with p given by (47); then 

S,~(t,,~)/n 3/~ -+ e x p [ - u 2 v 2 / 4  - b(u 2 + v2)/2] du dv (49) 



The Statistics of Curie-Weiss Models 161 

R E F E R E N C E S  

1. R. H. Brout, in Statistical Physics: Phase Transitions and Superfluidity, M. Chretien, 
E. P. Gross, S. Deser, eds. (Gordon and Breach, New York, 1968). 

2. M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A 4:1071 (1971). 
3. F. Dunlop and C. M. Newman, Comm. Math. Phys. 44:223 (1975). 
4. G. G. Emch and H. J. F. Knops, J. Math. Phys. 11:3008 (1970). 
5. R. S. Ellis and C. M. Newman, Limit theorems for sums of dependent random 

variables occurring in statistical mechanics, U. Mass.[Indiana U. preprint (1977), to 
appear in Z. f. Wahrsch. verw. Geb. 

6. R. S. Ellis and C. M. Newman in Proceedings of the International Conference on the 
Mathematical Problems in Theoretical Physics, Rome, I977. 

7. G. Gallavotti and G. Jona-Lasinio, Comm. Math. Phys. 41:301 (1975). 
8. G. Gallavotti and H. J. F. Knops, Riv. Nuovo Cimento 5:341 (1975). 
9. G. Jona-Lasinio, Probabilistic approach to critical behavior, 1976 Carg6se summer 

school on "New Developments in Quantum Field Theory and Statistical Mechanics." 
10. G. Jona-Lasinio, Nuovo Cimento 26]3:99 (1975). 
11. M. Kac, in Statistical Physics: Phase Transitions and Superfluidity, M. Chretien, 

E. P. Gross, S. Deser, eds. (Gordon and Breach, New York, 1968). 
12. L. P. Kadanoff, in Phase Transitions and CriticalPhenomena, Vol. 5A, C. Domb and 

M. S. Green, eds. (Academic, New York, 1976). 
13. S. Karlin and W. J. Studden, TchebycheffSystems: with Applications in Analysis and 

Statistics (Interscience, New York, 1966). 
14. T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 36:856 (1964). 
15. B. Simon and R. B. Griffiths Comm. Math. Phys. 33:145 (1973). 
16. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford 

Univ. Press, New York, 1971). 
17. A. H. Stroud, Numerical Quadrature and Solution of Ordinary Differential Equations 

(Springer, 1974). 
18. C. Thompson, Mathematical Statistical Mechanics (Macmillan, New York, 1972). 
19. K. G. Wilson and M. E. Fischer, Phys. Rev. Lett. 28:240 (1972). 


